[image: image1.wmf]
DESCRIPTION:

This circuit generates 32,768 CW and 32,768 CCW evenly spaced frequencies for motor control. The frequency range is from 0 to 8,191.75 full steps per second with a resolution of 0.25 full steps per second at any speed. The STEP output is scaled for use with full-step, half-step, 10 uSTEP and 125 uSTEP drives. All will turn at the same maximum speed.

The output velocity update rate is 1, 024 times a second. The circuit is fully cascadable to any number of axis. Because a precise speed is held for a precise period of time, motor position is the digital integral of the velocity. For instance, if a speed of 1,024 full steps per second is commanded (Hex 2,000), then the motor will move exactly 1 full step every update period (1/1,024 of a second). All that has to be done is to sum the command velocity to a motor position register.

Acceleration/deceleration is achieved by adding/subtracting a “delta velocity” to the velocity command on every update interrupt. This may be non-linear if acceleration ramp profiling is desired, such as keeping the velocity second derivative finite (S-shaped accel ramp). The velocity “stair-casing” is 1,024 per second, which is fine enough for most applications.

The CPU overhead is 2 bytes per axis 1,024 times a second. I have had a 2-axis version running on a 4 MHz Z-80 which had to calculate 32 bit floating point trigonometric equations for X,Y circular interpolation (256 vectors per second), so a PC should have no problem *.

HOW THE CIRCUIT WORKS:

The top two ‘273s form a 2 bit deep, 8 bit wide shift register for each axis. The input is from a parallel port and the output goes to the next axis in line. The purpose of this register is to assemble the 15 bit velocity command and the 1 bit direction command for the subsequent update clock.

The middle ‘273s synchronously load the assembled data to present it to the frequency generator 1,024 times a second. Its clock is derived from the master 4.096 MHz clock that sets the generator’s timing. The 1.024 KHz frequency is derived by dividing the master clock by 4,000.

The 4 ‘283 4-bit adders and the 2 bottom ‘273 octal D-Flops form the heart of the frequency generator. It work as follows:

The middle ‘273s present a 15 bit velocity command to port “B” of the “283 adders. Assume it is 0001 hex and that the bottom ‘273s contents are 0000 hex. The bottom ‘273s inputs are connected to the adder’s “sum” output and its output is connected to the adder’s port “A”.

The adder’s sum will be 0000 hex + 0001 hex = 0001 hex. This will be clocked into the bottom ‘273s on the next 4.096 MHz positive clock edge. The sum now will be 0001 hex + 0001 hex = 0002 hex, which will be clocked in on the subsequent clock edge.

It will take 65,536 clock edges before there is a “carry out” from the adder. Had the velocity command been 0002 hex, it would have taken 32,768 clock periods and so on. The point is the “carry out” frequency is directly proportional to the value of the velocity command present on the adder’s port “B”.

This is mush better than using counter-timer circuits for frequency generation. Their period is proportional to the command word, thus the frequency resolution is non-linear; very good at low speeds, very poor at high speeds.

The post-divider ‘390s scale the frequency for the motor drive used and improves the spectral frequency of the resultant pulses. It is scaled so the drive used will deliver the same motor shaft speed, regardless of its resolution.

IMPLEMENTATION:

This circuit requires 13-14 Ics per axis. I estimate a 4-axis unit would fit in a “pack of cigarettes” volume if surface mount technology is used. Each axis would be a separate plug-in module of about 1” by 2” by 0.125” size. It would fit on a motherboard that would have the master oscillator and divider, LPT interface and STEP/DIRECTION connector on it. It would be easy to add 8 bits of input (limit switches and the like) and 8 bits of output (current reduction, relay drivers, etc) as well to the shift register output. With 4 axis and this I/O it would require 10-12 bytes from the LPT 1,024 times a second. This I don’t think would strain the PC very much.

Figuring a direct cost of $.50 an IC and $3 an axis PCB, a 4 axis system would be less than $100 for a high performance, multi-axis controller.

Someone that is Windows GUI-savvy could easily write an interface for this; all they would have to do is keep the LPT buffer full, no more than 10 to 12 bytes every millisecond. I am not and have no intention of becoming so. This could be a very cool product though.

 If anyone is interested I will provide a complete schematic; if there is further interest I will generate a PCB layout that will define the physical dimensions of this unit as time allows.

* The Z-80 natively can only add and subtract fixed-point 8 and 16 bit values. It has to be taught multiply and divide and floating point math. It is slow, the math routines have to be highly optimized regarding clock cycles of execution. It used to be a hobby of mine to generate the shortest possible 24-bit multiply routine which is the crux of all higher math; I believe I had it down to less than 1,500 clock cycles, using a combination of look-up tables and unfolded loops.

From that followed teaching it how to divide (multiply based), the Newton-Ralphson method for deriving square roots, Chebyschev polynomial expansions for transcendental functions like sine, cosine and tangent. All of this had to be accomplished in 3.9 mS, or about 1,000 clock cycles. Considering a 16-bit addition took 9 clock cycles, it didn’t leave much time to spare.

Obviously all the code was assembly language and hand-coded. It left me with two impressions; I do not want to do this again and I am very respectful of people who do this for a living, day in and day out.

Mariss

